CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ

Winter Examinations 2015/16

Module Title: Technological Maths 2

Module Code:

MATH6015

School:

School of Mechanical, Electrical and Process Engineering

Programme Titles: B Eng (Hons) in Building Energy Systems – Year 2

B Eng (Hons) in Sustainable Energy Engineering – Year 2
Bachelor of Engineering in Biomedical Engineering – Year 2
Bachelor of Engineering in Building Services Engineering – Year 2
Bachelor of Engineering in Mechanical Engineering – Year 2

Programme Codes:

EBENS_8_Y2

ESENT_8_Y2 EBIME_7_Y2 EBSEN_7_Y2 EMECH_7_Y2

External Examiner:

Dr James Cruickshank

Internal Examiners:

Dr C. Carroll, Dr M. Lishchynska, Mr J.P. McCarthy

Instructions:

Answer ALL questions.

Duration:

2 HOURS

Sitting:

Winter 2015

Exam Requirements:

Mathematics Tables

Note to Candidates: Please check the Programme Title and the Module Title to ensure that you are attempting the correct examination.

If in doubt please contact an Invigilator.

1. (a) Differentiate $f(x) = 3x^2 - 2x + 5$ from first principles.

No marks will be awarded if any other method is used.

[7 Marks]

(b) Find the slope of the curve $y = x e^x$ at the point where x = 0.2. Give your answer correct to two decimal places.

[4 Marks]

(c) Differentiate the following functions by rule:

i.
$$y = 2x^5 + \sqrt{x} + \ln(2x) - 8$$
.

[5 Marks]

ii.
$$y = e^{-3x}(x^2 + 7)^5$$
.

[5 Marks]

iii.
$$z = \frac{\sin(\pi t)}{t^2}$$
.

[4 Marks]

2. (a) The angular displacement in radians, $\theta(t)$, of a particle in circular motion is given by

$$\theta(t) = 3\sin\left(2t - \frac{\pi}{3}\right),\,$$

for t between 0 and π seconds.

i. Find the angular velocity, $\omega(t)$.

[3 Marks]

ii. Find the angular acceleration, $\alpha(t)$.

[3 Marks]

iii. When is the angular acceleration first equal to zero?

[5 Marks]

(b) Suppose that the temperature, T, of a device is changing in time, t, according to:

$$T(t) = -0.6t^2 + 9t + 9.$$

The temperature is measured in $^{\circ}$ C and t in minutes. Find the maximum temperature of the device.

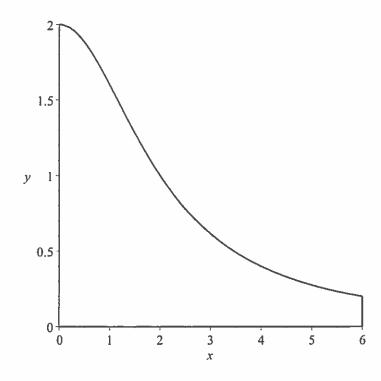
[4 Marks]

- (c) An engineer has been asked to produce a part for a machine. The part needs to be in the shape of a hollow cylinder, closed at one end and the total surface area of the part equal 1.5 m².
 - i. Find an expression for the height, h, of the cylinder in terms of the radius, r. [3 Marks]
 - ii. Find the dimensions of the cylinder that maximise the volume. Give your answers for h and r correct to four decimal places.

[7 Marks]

3. (a) Find the following:

i.
$$\int \left(2x^6 + \frac{4}{x} - 2e^{-0.5x} + 10\right) dx$$
. [5 Marks]


ii.
$$\int_0^{\pi/10} 4\cos(5t) dt$$
. [3 Marks]

iii.
$$\int (x+3)(x^2+6x)^4 dx$$
. [6 Marks]

iv.
$$\int \frac{x-5}{(x-2)(x-3)} dx.$$
 [5 Marks]

(b) Find the area enclosed between the curve $y = \frac{8}{x^2 + 4}$, the coordinate axes and the line x = 6.

Give your answer correct to the nearest whole number.

[6 Marks]

4. (a) A force of $F(x) = 100 - 0.12x^2$, measured in Newtons, raises up a leaking bucket (where x is the distance from the ground). Find the work done in raising the leaking bucket from the ground to a height of x = 20 m.

[7 Marks]

(b) Using a formula, or otherwise, find the mean value of the function

$$f(t) = \cos t$$

in the region t = 0 to $t = 2\pi$.

[4 marks]

Show that the root mean square value of $f(t) = \cos t$ over this region is $\frac{1}{\sqrt{2}}$.

[6 marks]

(c) The bending moment, M(x), at a point x on a beam satisfies:

$$\frac{dM}{dx} = 54 - 18x.$$

Solve this differential equation for M(x) if M=0 when x=0.

[8 marks]

Useful Formulae

$$V = \pi \int y^2 \, dx$$

$$W = \int F \, dx$$

$$\overline{y} = \frac{1}{b-a} \int y \, dx$$

$$y_{\rm RMS} = \sqrt{\frac{1}{b-a} \int y^2 \, dx}$$